• Fluorescence enhancement in large-scale self-assembled gold nanoparticle double arrays
    M. Chekini, R. Filter, J. Bierwagen, A. Cunningham, C. Rockstuhl and T. Bürgi
    Journal of Applied Physics, 118 (23) (2015), p233107
    DOI:10.1063/1.4938025 | unige:79113 | Abstract | Article HTML | Article PDF
 
Localized surface plasmon resonances excited in metallic nanoparticles confine and enhance electromagnetic fields at the nanoscale. This is particularly pronounced in dimers made from two closely spaced nanoparticles. When quantum emitters, such as dyes, are placed in the gap of those dimers, their absorption and emission characteristics can be modified. Both processes have to be considered when aiming to enhance the fluorescence from the quantum emitters. This is particularly challenging for dimers, since the electromagnetic properties and the enhanced fluorescence sensitively depend on the distance between the nanoparticles. Here, we use a layer-by-layer method to precisely control the distances in such systems. We consider a dye layer deposited on top of an array of goldnanoparticles or integrated into a central position of a double array of goldnanoparticles. We study the effect of the spatial arrangement and the average distance on the plasmon-enhanced fluorescence. We found a maximum of a 99-fold increase in the fluorescence intensity of the dye layer sandwiched between two goldnanoparticle arrays. The interaction of the dye layer with the plasmonic system also causes a spectral shift in the emission wavelengths and a shortening of the fluorescence life times. Our work paves the way for large-scale, high throughput, and low-cost self-assembled functionalized plasmonic systems that can be used as efficient light sources.
  • Stacked and Tunable Large-Scale Plasmonic Nanoparticle Arrays for Surface-Enhanced Raman Spectroscopy
    S. Mühlig, D. Cialla, A. Cunningham, A. März, K. Weber, T. Bürgi, F. Lederer and C. Rockstuhl
    The Journal of Physical Chemistry C, 118 (19) (2014), p10230-10237
    DOI:10.1021/jp409688p | unige:94111 | Abstract | Article HTML | Article PDF
Surface-enhanced Raman spectroscopy takes advantage of plasmonic substrates that sustain resonances at tunable frequencies with a reproducibly extraordinary field enhancement. Low-cost and large-scale fabrication of these substrates is further required. Here, we present stacked large-scale arrays of strongly coupled gold nanoparticles as promising candidates for such substrates. These arrays are fabricated by bottom-up techniques that fulfill the aforementioned requirements. The distance between adjacent arrays in the stack is controlled with high precision using a discrete number of monolayers of molecules that enable the spectral position of the plasmonic resonances to be tuned. Although the nanoparticles are randomly arranged in each array, the spatial proximity of the stacked arrays enables a strong coupling among nanoparticles to be achieved in adjacent arrays. The huge field enhancements due to these strongly coupled gold nanoparticles are shown to enhance the Raman signal. We show that effectively the optical response from these stacked arrays and the Raman signals can be understood in a simplifying picture where only an individual nanoparticle dimer is considered. The possibility to tune the plasmonic resonances of the substrate across the visible spectrum makes our material a plasmonic substrate of choice for many applications where light–matter interactions need to be intensified.
The strong coupling between planar arrays of gold and silver nanoparticles mediated by a near-field interaction is investigated both theoretically and experimentally to provide an in-depth study of symmetry breaking in complex nanoparticle structures. The asymmetric composition allows to probe for bright and dark eigenmodes, in accordance with plasmon hybridization theory. The strong coupling could only be observed by separating the layers by a nanometric distance with monolayers of suitably chosen polymers. The bottom-up assembly of the nanoparticles as well as the stratified structures themselves gives rise to an extremely flexible system that, moreover, allows the facile variation of a number of important material parameters as well as the preparation of samples on large scales. This flexibility was used to modify the coupling distance between arrays, showing that both the positions and relative intensities of the resonances observed can be tuned with a high degree of precision. Our work renders research in the field of “plasmonic molecules” mature to the extent that it could be incorporated into functional optical devices.
  • Optical properties of a fabricated self-assembled bottom-up bulk metamaterialOpen access paper
    S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich and F. Lederer
    Optics Express, 19 (10) (2011), p9607-9616
    DOI:10.1364/OE.19.009607 | unige:98050 | Abstract | Article HTML | Article PDF
We investigate the optical properties of a true three-dimensional metamaterial that was fabricated using a self-assembly bottom-up technology. The metamaterial consists of closely packed spherical clusters being formed by a large number of non-touching gold nanoparticles. After presenting experimental results, we apply a generalized Mie theory to analyze its spectral response revealing that it is dominated by a magnetic dipole contribution. By using an effective medium theory we show that the fabricated metamaterial exhibits a dispersive effective permeability, i.e. artificial magnetism. Although this metamaterial is not yet left-handed it might serve as a starting point for achieving bulk metamaterials by using bottom-up approaches.
  
  • Self-Assembled Plasmonic Core-Shell Clusters with an Isotropic Magnetic Dipole Response in the Visible Range
    S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl and F. Lederer
    ACS Nano, 5 (8) (2011), p6586-6592
    DOI:10.1021/nn201969h | unige:16819 | Abstract | Article HTML | Article PDF
We theoretically analyze, fabricate, and characterize a three-dimensional plasmonic nanostructure that exhibits a strong and isotropic magnetic response in the visible spectral domain. Using two different bottom-up approaches that rely on self-organization and colloidal nanochemistry, we fabricate clusters consisting of dielectric core spheres, which are smaller than the wavelength of the incident radiation and are decorated by a large number of metallic nanospheres. Hence, despite having a complicated inner geometry, such a core–shell particle is sufficiently small to be perceived as an individual object in the far field. The optical properties of such complex plasmonic core–shell particles are discussed for two different core diameters.
Using bottom-up and self-assembly processes, large scale layered arrays of strongly coupled gold nanoparticles with controllable dimensions were fabricated. By carefully adjusting the distance between adjacent gold nanoparticle arrays, it is possible to control the coupling of the localized surface plasmon polariton resonance as sustained by individual gold nanoparticles. A greater interaction is observed at smaller separations, leading to a well pronounced shift in the spectral position of resonances that can be adjusted with high precision. Simulations showed good agreement with experimental observations in an in-depth investigation of such structures, suggesting minimal separations of only one nanometer are achieved.

Google

 


Redisplay in format 

                 

    in encoding 

  
Format for journal references
Format for book references
Last update Tuesday March 13 2018